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Abstract
In systems with timescale separation, where the fast degrees of freedom
exhibit chaotic motion, the latter are replaced by suitable stochastic processes.
A projection technique is employed to derive equations of motion for the
phase space density of the slow variables by eliminating the fast ones. The
resulting equations can be approximated in a controlled way by Fokker–Planck
equations or equivalently by stochastic differential equations for slow degrees
of freedom. We discuss some model situations and explore the accuracy of the
approximations by numerical simulations.

PACS numbers: 0545, 0510G

1. Introduction

Many phenomena in nature are characterized by the interaction of dynamics on very different
timescales. Within the context of statistical mechanics such phenomena have been well known
for decades and result finally in effective reduced descriptions such as, for example, Boltzmann,
Master or Fokker–Planck equations [1]. Here one usually applies a thermodynamic limit for the
fast degrees of freedom and assumes to some degree local thermodynamic equilibrium which
gives rise to fluctuation dissipation relations. However, these thermodynamic properties of the
‘heat bath’ are in principle dispensable, since one just relies on the decay of correlations of
fast degrees of freedom. Thus, one should be able to apply similar approaches in systems with
few degrees of freedom having chaotic dynamics.

One particular example where these considerations play an important role is the ocean–
atmosphere system generating our weather and our climate. Here, on the one hand a
considerable separation of timescales appears: the ocean is characterized by timescales of
hundreds of years, whereas the atmospheric structures such as cyclones and anticyclones have
lifetimes of a couple of days. On the other hand, one cannot model the fast degrees of freedom
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as a thermodynamic heat bath, although its effective dynamical degrees of freedom may be
large. Nevertheless it might be highly useful to reduce the number of degrees of freedom and
in particular to get rid of the fast degrees, if one is interested in behaviour over a long timescale.
The most obvious approximation would be to ignore the fast degrees of freedom completely, or
at least to replace them by a function of the slow ones. Such approaches known as ‘adiabatic
elimination’ [2] or centre manifold reductions work well if the fast degrees of freedom are
governed by essentially relaxatory dynamics. If the fast degrees are periodic, the ‘averaging
theorem’ [3] supplies a framework for their elimination. In both cases, effective deterministic
equations of motion containing exclusively the slow degrees of freedom are found. However,
for chaotic degrees of freedom, these procedures have to be improved in order not to lose
relevant dynamical scenarios.

In the framework of climate research, the notion of stochastic climate models has been
coined by Hasselmann [4] and recently recalled by mathematicians [5]. The idea is to replace
the fast degrees of freedom by suitable stochastic processes, i.e. to replace the full deterministic
system by a stochastic differential equation with only slow degrees of freedom. It is, however,
still unclear how to derive systematically a stochastic model from a deterministic one and in
which sense the stochastic equation might be an approximation of the deterministic system. In
this paper we will make use of a projection technique which yields answers to both questions.

Related work, with a different goal and different techniques, was done for specific systems
by Beck. He showed that central limit theorems can be applied to chaotic deterministic
systems [6], hence showing that chaotic systems can exhibit stochastic signatures in certain
limits (cf also the approaches in [7, 8]). Moreover, he was able to prove that the Perron–
Frobenius equation governing the time evolution of the invariant measure of a particular class
of dynamical systems is, in a certain limit, equivalent to a Fokker–Planck equation [9]. The
setting studied in [6, 9] is in fact a special case of timescale separation and hence a specific
example of what we want to show here in more generality.

To specify our formal setup we restrict ourselves to the case of only two timescales, called
‘slow’ and ‘fast’. For simplicity and pedagogical reasons we assume that we can decompose
the set of all phase space variables into two groups of dimensionality dx and dy , where x are
the slow variables and y the fast ones. If we assume that the right-hand sides of the following
differential equations, f and g, are of the order of unity, the timescale separation can be
mediated by a small parameter ε through

ẋ = f(x,y) (1)

ẏ = 1

ε
g(x,y) (2)

where 0 < ε � 1. The ultimate goal of this paper will be to derive a stochastic differential
equation for x alone:

˙̃x = f̃(x̃, ξ) (3)

where ξ is a vector valued noise process with suitable correlations.
The issue of how to derive equation (3) from equations (1) and (2) is directly linked

to the question of whether and in which sense the stochastic description approximates the
deterministic system. It is evident that the introduction of any kind of noise process can never
improve the accuracy of a particular solution, i.e. the error |x(t) − x̃(t)| can never be made
smaller on average by introducing uncertainty in the evolution equation of x̃. Even if the error
is smaller for one particular realization of the noise process, it will inevitably be larger for
other realizations. As a consequence, the gain by introducing noise can only be in the sense
of more realistic modelling, or more realistic averages. In sections 4 and 5 we will study
examples where the fast degrees of freedom create dynamical phenomena which disappear
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when eliminating the fast degrees and which reappear when introducing noise instead. So
in the end our criterion will be the accuracy by which the reduced equation reproduces the
invariant measure of the full system restricted to the slow degrees of freedom, and on the
accuracy of ergodic averages on this measure. Hence, a relevant and exact intermediate result
will be an equation for the time evolution of the phase space density of the slow variables,
where the fast degrees of freedom have been self-consistently eliminated.

Section 2 is devoted to the formal elimination scheme to derive Fokker–Planck-like
evolution equations for the phase space density of the slow degrees of freedom. Among
others, one likes to convert the formal solution into Langevin equations for the slow variables
in order to be able to perform numerical solutions of the initial value problem, which is the
typical setting in most numerical modelling tasks. The resulting Langevin equation assumes a
particularly simple form for skew systems, which are discussed in section 3. Sections 4 and 5
are devoted to two different numerical examples. The first one, presented in section 4, will
allow us to make a quantitative comparison between the numerical results and our analytic
predictions. One particular issue will be how the accuracy of the approximations made at the
end of section 2 will depend on the magnitude of the timescale separation. The second example
which is discussed in section 5 exploits some aspect of the full nonlinear coupling between the
different types of degrees of freedom. Bifurcations in the fast subsystem may considerably
influence the nature of the effective noise process. Some technical details are summarized in
three appendices to keep the paper self-contained.

2. Temporal evolution in terms of Fokker–Planck equations

In order to perform the elimination of the fast degrees of freedom we switch from the trajectory-
wise description of equations (1) and (2) to an equivalent description in terms of the phase
space density ρt (x,y) and the corresponding Liouville-like equation

∂ρt

∂t
= −Lρt . (4)

Here

L := 1

ε
L(0) + L(1) := 1

ε

∂

∂y
g(x,y) +

∂

∂x
f(x,y) (5)

denotes the generator of the dynamics. We assume for simplicity that all densities are
smooth and can be treated like ordinary functions1. Elimination of fast variables is now
most conveniently done by considering the distribution of slow variables

ρ̄t (x) =
∫

dy ρt (x,y). (6)

It is the goal to derive a closed equation of motion for the distribution (6) from the full equation
of motion (4). The spirit of such a procedure consists in approximating the full distribution by
a reduced density, where the fast variables are in some sense adiabatically eliminated:

ρred
t (x,y) = ρcond(y|x)ρ̄t (x). (7)

Regardless of the special form of ρcond it is possible to write down an exact equation of motion
for ρ̄t using well established projection operator techniques [10]. However, the usefulness and
the evaluation of such equations in terms of a perturbation expansion depends crucially on the
particular choice for ρcond.

1 One may add a small diffusive-like contribution to equation (5) to ensure smoothness and consider the limit of
vanishing diffusion at the end. In addition, a generalization in terms of corresponding measures seems to be possible,
but would increase the amount of notation considerably.
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As also discussed in a previous study [11], two different choices seem to be appealing.
From the mathematical point of view one would guess that as long as y is fast enough it adjusts
itself almost instantaneously according to the invariant distribution of the fast equation (2)
with x being considered as a fixed parameter. The corresponding density ρadd

x (y) has the
advantage that averages with respect to y can be computed as time averages provided certain
ergodic properties are met. If ηx[t,y] denotes the solution of equation (2) with initial condition
ηx[0,y] = y, then

〈h〉y :=
∫

dy h(x,y)ρadd
x (y) = lim

T→∞

∫ T

0
dt h(x,ηx[t,y]) (8)

holds for typical initial conditions and observables h(x,y).
On the other hand one may take the stationary conditional distribution

ρcond(y|x) := ρ∗(x,y)
ρ̄∗(x)

(9)

where ρ∗ and ρ̄∗ denote the corresponding stationary densities. As we shall show, this choice
leads to formally consistent results. Fortunately, the two cases just mentioned coincide in the
limit of small ε provided some regularity assumptions are met. Taking equations (5) and (9)
into account the condition of stationarity results in

0 = Lρ∗ = 1

ε
ρ̄∗L(0)ρcond + L(1)ρcondρ̄∗. (10)

Assuming that all densities stay uniformly smooth in the limit ε → 0, the first term has
to vanish in the leading order of the small parameter ε. Therefore, ρcond tends towards the
invariant density of L(0) and finally coincides with ρadd

x .
If we now apply the standard projection operator technique to equation (4) we obtain,

finally, a closed equation of motion for the density (6) (namely equation (A.8), cf appendix A
for details). In lowest order perturbation theory this equation reduces to the Fokker–Planck
equation (cf appendix B)

∂ρ̄t

∂t
= − ∂

∂x
〈f〉yρ̄t (x) +

∂

∂x

(
D(x)ρ̄∗(x)

∂

∂x

ρ̄t (x)

ρ̄∗(x)

)
. (11)

Here the dx-dimensional diffusion matrix is determined by the fluctuation of the vector field f ,

δf(x,y) = f(x,y) − 〈f〉y (12)

in terms of the autocorrelation function as

D(x) =
∫ ∞

0
dt 〈δf(x,ηx[t,y])δf(x,y)〉y. (13)

The average 〈· · ·〉y expresses according to the definition (8) an average over initial conditions y.
As long as the dynamics of equation (2) is (exponentially) mixing, the diffusion matrix is well
defined since the correlations decay sufficiently fast. Furthermore, the diffusion matrix is of
order ε, since this expansion parameter governs the timescale on which the correlation decays
according to equation (2).

Thus, in the lowest order perturbation expansion the deterministic equations of motion
reduce to a stochastic system with the Fokker–Planck equation being given by equation (11).
The drift consists of the y-averaged vector field, whereas the diffusion is given by the
autocorrelations of the fluctuations of the vector field. Both quantities are easily calculated by
integrating the fast system (2) alone.

The resulting Fokker–Planck equation is a self-consistent equation for the slow variables
and can be converted into a Langevin equation. The latter is often easier to handle by numeric
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integration since time dependent solutions of Fokker–Planck equations are usually cumbersome
to compute. Moreover, dynamical aspects such as the stability of an individual solution with
respect to perturbations of the initial condition are simpler to analyse on the basis of stochastic
differential equations. If D1/2(x) denotes the canonical square root of the diffusion matrix, i.e.
D1/2 is the symmetric positive semi-definite matrix whose square yields the diffusion matrix
(which by construction is positive semi-definite), then the corresponding Langevin equation,
using Stratonovich calculus, reads [12]

ẋ(t) = 〈f〉y + D(x)
∂

∂x
ln ρ̄∗(x) + D1/2(x)

(
∂

∂x
D1/2(x)

)
+ D1/2(x)ξ(t). (14)

Here ξ denotes a Gaussian white noise normalized according to

〈ξν(t)ξµ(t ′)〉 = 2δνµδ(t − t ′). (15)

In the lowest non-trivial order in ε, equation (14) reduces to a Langevin equation which
contains only x and the noise process but not the invariant density ρ̄∗. Hence, it can be treated
numerically or even analytically, quite straightforwardly.

3. Skew systems and averaging

The simplest class of systems consists of those where there is no feedback from the slow to the
fast degrees of freedom, i.e. where g(x,y) = g(y). Then the diffusion matrix (13) inherits
its phase space dependence solely from the coupling of the fast degrees of freedom to the
slow one, f(x,y), but not from the internal fast dynamics η. Hence an additive/multiplicative
coupling of the fast degrees of freedom in f directly transfers to the coupling of the noise in the
Langevin equation (14). Such a feature is clearly not present in non-skew models discussed in
the next section.

There are two prominent examples of elimination of fast degrees of freedom which behave
regularly and yield a deterministic reduced dynamical system (e.g. cf [2]). Both of these cases
are also included in our analysis. The first case, often referred to as ‘slaving’, corresponds
to a fast dynamical system (2) relaxing to a fixed point. Here a full discussion which goes
to arbitrary order in perturbation theory can be supplied (cf appendix C). The second case,
often referred to as averaging, corresponds to a periodic fast dynamics with g(x,y) = g(y),
so that the period does not depend on x. The approach adopted here is not well tailored to this
case since the autocorrelation entering the diffusion matrix (13) is periodic and the Markov
approximation needs a more thorough justification. Nevertheless, the diffusion matrix still has
a meaning in the distributional sense2. Above all, the diffusion matrix coincides with the zero
frequency contribution in the spectrum of the periodic quantity (12). Since the fluctuation does
not contain a constant contribution, the diffusion matrix vanishes and therefore no stochastic
force appears in the Langevin equation (14). The deterministic drift is given by the time
average of the slow dynamics since the density ρ̄∗ is in general non-singular. Thus, the result
coincides to leading order with the usual averaging procedure.

4. Stochastic versus deterministic resonance

Let us now come back to the case where the fast dynamics is chaotic, so that we expect a finite
diffusion in the reduced dynamics. As an example, we study the motion of a damped particle

2 From a technical point of view one may include a factor exp (−αt) in the integral equation (13) and consider the
limit α → 0+.
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in a double well potential driven by small periodic forcing. One component of a fast chaotic
Lorenz model is added to the slow equation of motion

ẋ = x − x3 + a cos(ωt) + κy1

ẏ1 = σ

ε
(y2 − y1)

ẏ2 = 1

ε
(ry1 − y1y3 − y2)

ẏ3 = 1

ε
(y1y2 − by3).

(16)

We choose the canonical parameters, σ = 10, r = 28, b = 8/3, and ω = 0.001, a = 0.1.
Due to the lack of feedback from the slow to the fast variables and due to the additive nature
of the coupling of the fast to the slow variables, the diffusion constant D of equation (13)
is independent of x. If we denote by 〈y1(t

′)y1(t
′ + t)〉t ′ the auto-correlation function of the

Lorenz-y1-coordinate for ε = 1, then the diffusion constant D in the Fokker–Planck equation
corresponding to equation (16) is given by

D = εκ2
∫ ∞

0
〈y1(t

′)y1(t
′ + t)〉t ′ dt. (17)

The effective description in terms of the Langevin equation (14) in order
√
ε for the

x-dynamics leads to the well known classical scenario of stochastic resonance (for an excellent
review on stochastic resonance see [14]). With κ = 0 and a = 0, the particle settles down in
one of the two wells of the potential, i.e. x(t) → ±1. For 0 < a � 1, the periodic forcing
is still so weak that it cannot induce any transitions from one well to the other. For κ > 0
and hence D > 0 we expect a finite probability for such a jump from one well to the other.
It is approximately given by the Kramers rate 1/TK = exp (−�/D) where � = 1/4 is the
height of the barrier between the two wells, and D measures the noise amplitude. It is known
that there occurs a maximal synchronization between the jumps and the periodic forcing if the
period of the forcing and the Kramers time fulfil the condition 2π/ω = 2TK.

If ε � 1 the theory developed in the last section tells us that the Lorenz a y1-coordinate
should in fact act like noise. In figure 1 we show the numerical results of the full system (16)
in comparison to white-noise-driven motion in the double well, i.e. a numerical simulation of
the corresponding Langevin equation3. We compute the correlation between the coordinate
x(t) and the periodic driving

c =
√

〈x(t) cosωt〉2
t + 〈x(t) sin ωt〉2

t (18)

and the phase difference between the driving force and the well-hopping

φ = arctan
〈x(t) sin ωt〉2

t

〈x(t) cosωt〉2
t

. (19)

In the numerical simulation, we fix ε and tune κ to produce the curves shown in figure 1.
The comparison of the results shows that for ε < 0.1, there is within the statistical

accuracy a perfect agreement between the noise-driven system and the Lorenz-driven system.
For larger ε, i.e. less pronounced timescale separation, deviations of the curves from the
noise limit are evident. The onset of synchronous well-hopping is shifted towards larger

3 In a naive numerical simulation, white noise is realized as a piecewise constant function with step widths δt , where
δt is the time step of the Euler-integrator. Consequently, the auto-correlation function of this numerical noise is
c(τ ) = σ 2 if τ ∈ [−δt/2, δt/2] and 0 elsewhere, where σ 2 is the variance of the random numbers. Hence, the
diffusion coefficient of this process is 1/2δtσ 2. Of course, in a proper integration scheme this

√
δt-factor is correctly

respected.
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Figure 1. (a) Correlation c between x(t) and the periodic driving for sufficiently strong timescale
separation compared to the numerical integration of the Langevin equation (14). The ‘effective
noise amplitude’ is, for the deterministic simulation, obtained according to equation (17). (b) The
convergence of the behaviour of c as a function of the timescale separation ε. (c) The phase shift φ
between periodic driver and response of x(t), comparing the Lorenz-driven system to the Langevin
dynamics. In [14] approximate analytic descriptions of both c and φ are given.
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(c)

Figure 1. Continued

Figure 2. Curve as in figure 1 for white noise for the Lorenz driven motion with ε = 1 and for
surrogate driven motion, also with ε = 1. The inset shows the distribution of the Lorenz data and
the surrogates.

equivalent noise amplitudes, and the correlation between periodic forcing and hopping is
slightly more pronounced. The first comes from the clear non-Gaussian character of the short
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time accumulation of y1. The tails are finite as can be seen from the inset in figure 2.
This example shows impressively the benefits of stochastic modelling. The ad hoc

complete elimination of the fast degrees of freedom is equivalent here with the zeroth order
approximation in ε. However, it destroys the relevant dynamical feature of hopping between
the wells, whereas our properly derived noise process which is first order in

√
ε produces

quantitatively correct hopping rates and synchronization effects. Thus the invariant measure
in the extended phase space, i.e. including the driving force, is correctly reproduced (cf
also [7, 11]).

For ε � 0.1 one needs to go beyond the first order in
√
ε. In order to find out the nature of

the higher order corrections, we created so-called surrogate data of the Lorenz y1-coordinate.
A sequence of random numbers was created with the same identical autocorrelation function
and marginal probability distribution as the original sequence of the Lorenz system but with no
non-trivial higher-order correlations [15]. It thus reflects a non-Gaussian, linearly correlated
noise process. Replacing the fast Lorenz system by these surrogates and considering ε = 1,
we indeed find a shift of the onset of the resonance to higher noise levels. We do not, however,
reproduce the increased value of correlation between hopping and periodic driving of the
double well (cf figure 2). We therefore conclude that the non-trivial distribution (cf insert of
figure 2) is only one source of the differences. It can be taken into account by a non-Gaussian
noise process. We should recall that the linear correlations of the fast variable can be fully
absorbed in the diffusion constant, so that as an alternative to the sophisticated surrogates
one can use a simple scrambling of the fast deterministic variable (conserving their non-trivial
distribution but destroying all of their temporal correlations) and feed this data instead of ξ into
the Langevin equation. In this case, the correlations and distributions are considered separately.
The remaining discrepancy has to be caused by higher-order correlations. A proper treatment
of this feature would require much more sophisticated stochastic models. Fortunately, such
correlations are only relevant if the timescale separation is poor.

We finally have to add, however, a reservation concerning the topological constraints.
Such constraints may appear if the slow subsystem displays relaxatory dynamics, e.g. if it is
one-dimensional. Then more sophisticated considerations have to be used. If one considers
the model (16) then, as explained above, the corresponding stochastic description yields a
simple one-dimensional stochastic differential equation which of course coincides with the
famous Kramers problem if the periodic driving is neglected. In such cases hopping between
the potential wells is triggered by the Gaussian nature of the noise which allows for arbitrarily
large amplitudes. These large amplitudes are indeed required to induce transitions between the
wells. That property already holds for the full system (16). Thus our stochastic description (11)
and (14) which we have obtained with a lowest order perturbation expansion is correct only if
the amplitudes of the fast system are large enough. If they are too small then all higher orders
of the master equation have to be taken into account (cf equation (A.8)) rendering the analysis
much more complicated. In fact, this particular feature yields the main difference between the
treatment of statistical mechanics and the analysis of low-dimensional dynamical systems. In
statistical mechanics large amplitudes can be always achieved because of the thermodynamic
limit of the heat bath. Here we cannot guarantee for these amplitudes in advance, and one
has to check such a condition in each case separately. However, if no topological constraint
appears then the approximation by Gaussian noise does not pose a problem as shown in this
section.
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5. Non-skew systems and intrinsic noise bifurcation

The general situation of a non-linear coupling between fast and slow degrees of freedom is
too difficult to be treated generally. We discuss here a particular effect, namely fast degrees
of freedom whose chaoticity depends on the values of the slow variables. Whenever the fast
variables are chaotic, the diffusion constant D(x) is non-vanishing and the fast variables act as
noise. When they behave periodically, the periodicity of the auto-correlation function finally
integrates up to zero, and no noise is visible. We combine these two features by considering a
fast equation of motion whose parameters are modulated by the slow variables in such a way
that a change from regular to chaotic motion can be triggered. For that purpose we consider
two Lorenz systems. The slow one with the variables x1, x2, x3 and standard parameter values
is driven by the fast variable y1 additively. The fast system with y1, y2, y3 is driven by the
slow one through the parameter ry(x1) = 210 + 60 arctan(2x1)/π . In order to simplify the
treatment we have chosen a sigmoid function ry(x1) for the feedback which acts as a kind of
switch:

ẋ1 = 10(x2 − x1) + κy1

ẋ2 = 28x1 − x1x3 − x2

ẋ3 = x1x2 − 8
3x3

ẏ1 = 10

ε
(y2 − y1)

ẏ2 = 1

ε
(ry(x1)y1 − y1y3 − y2)

ẏ3 = 1

ε

(
y1y2 − 8

3
y3

)
.

(20)

A projection of the attractor onto the x1–x2-plane is shown in figure 3, whereas figure 4 displays
the corresponding time trace of y1 and ry . The timescale relation was set to ε = 2 × 10−3 and
the coupling strength to κ = 10.

The asymmetry of the attractor shape is related to the fact that the mean value of y1 is
non-zero for both the chaotic and periodic motion. Moreover, if ry ≈ 240, the trajectory of the
fast system settles after some chaotic transient on one of two coexisting pairwise symmetric
limit cycles. Despite the fact that chaotic and limit cycle oscillations have almost identical
amplitudes and the same timescale, their effect on the slow variables is evidently different.
In the case of chaotic oscillations, the fast variable effectively acts as noise. However, for
the limit cycle behaviour, i.e. if ry ≈ 240, then due to the averaging theorem the stochastic
character of the fast variable disappears in good approximation. Equation (20) demonstrates
that through the coupling of the slow dynamics to the fast degrees of freedom the nature of the
effective noise changes considerably if bifurcations within the fast system appear.

6. Conclusions

If a system can be decomposed into a slow and a fast subsystem, the time evolution of the phase
space density of the slow variables can be described by an effective equation of motion. At
the lowest order of timescale separation such an equation reduces to a Fokker–Planck equation
where the drift and diffusion coefficients are given explicitly in terms of averages over the fast
dynamics. This result extends the usual averaging theorem for periodic modulation to chaotic
degrees of freedom. Our features are in agreement with generalized central limit theorems for
chaotic systems [6] which state that chaotic degrees of freedom can accumulate to a Gaussian
noise process.
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Figure 3. The projection of the attractor of equation (20) into the x1–x2-plane. On the left-hand
side of the attractor, ry(t) ≈ 180, so that the fast motion is chaotic, whereas on the right part,
ry(t) ≈ 240, so that it is periodic (limit cycle).

If the timescale separation becomes less pronounced we can still write down a closed non-
Markovian equation of motion for the density of the slow variables. Expanding in terms of the
timescale separation we observe that the exact stationary density is preserved in each order, so
that even an analysis beyond the simple Fokker–Planck approach seems to be promising. Of
course the simple relation to stochastic differential equations gets lost, since these higher-order
contributions are no longer of Fokker–Planck type. Thus, we expect that modelling of fast
degrees of freedom by Gaussian noise is limited to the case of well pronounced timescale
separation. This conjecture is supported by our numerical analysis. We have found that
a modelling by an adapted non-Gaussian noise which takes the distribution of the chaotic
process into account is not sufficient. Temporal higher-order correlations become important
if one wants to cope with all features of the full dynamical system. In [9] a particular higher-
order effect was found, which in our setting, however, seems less relevant since we are dealing
with time-continuous systems. However, translated into our language, it means: in a skew
system, the fast dynamics can stay arbitrarily long time spans arbitrarily close to an unstable
periodic orbit. Such regular episodes can potentially create strong non-stochastic effects on
slow dynamics, and since they can be arbitrarily long, they might appear (with corresponding
low probability) for every finite ε.

Last but not least we emphasize that contrary to applications in statistical mechanics the
slow variables may have dramatic effects on fast dynamics, since no thermodynamic limit for
a heat bath is involved. We have studied this effect in a simple model system showing that
the influence of the fast degrees of freedom may change considerably due to the dynamical
coupling of the slow variables. It would be interesting to find other physical models which
display this novel type of instability.
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(a)

(b)

Figure 4. The parameter ry(x1), as a function of time (a) and the fast variable y1 driving the slow
Lorenz (b) during the same time interval.

Appendix A. The Mori–Fujisaka–Shigematsu expansion

Within statistical mechanics there exists a well developed formally exact expansion of the
master equation [13]. We are adopting here a variant of this approach to derive an equation
of motion for the distribution of slow variables (6). In order to keep the presentation self-
contained we recall these steps in some detail for the special system given by equations (1)
and (2).

Using the notation Try{· · ·} = ∫
dy . . . for the phase space integral with respect to fast

variables we introduce the projection operator

P · · · := ρcond Try{· · ·} (A.1)

which generates the reduced density (7). Applying this projection to the full equation of
motion (4) one obtains the Nakajima–Zwanzig equation [10]

∂ρred
t

∂t
= −PLρred

t +
∫ t

0
ds PLQe−QLsQLρred

t−s (A.2)

where Q := I − P denotes the orthogonal projection. For the initial condition the constraint
Qρrel

t=0 = 0 has been adopted. Employing definitions (5), (9), and (A.1) and using the
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stationarity of ρ∗ we are left with4

∂ρ̄t

∂t
= − ∂

∂x
Try{fρcond}ρ̄t (x) +

∂

∂x

∫ t

0
ds Try{�fe−QLs�fρ∗} ∂

∂x

ρ̄t−s(x)

ρ̄∗(x)
(A.3)

where

�f(x,y) := f(x,y) − Try{fρcond} (A.4)

denotes the fluctuation with respect to the conditional stationary density (9). Equation (A.3)
constitutes almost the Fokker–Planck type equation we are dwelling on. But at the moment
the integral kernel is still an operator and we are going to evaluate its action on the distribution
ρ̄t explicitly.

Employing the formally adjoint operators

P† · · · = Try{· · · ρcond} L† = −1

ε
g(x,y)

∂

∂y
− ∂

∂x
f(x,y) (A.5)

we obtain for arbitrary functions G(x,y) and H(x,y)

Try{G · e−QLsH } − Try{e−L†Q†sG · H }
=

∫ s

0
ds1

d

ds1
Try{e−L†Q†(s−s1)G · e−QLs1H }

= − ∂

∂x

∫ s

0
ds1 Try{fQ†e−L†Q†(s−s1)G · e−QLs1H } (A.6)

where in the last step definition (5) has been employed. Iterating equation (A.6) we are left
with

Try{G · e−QLsH } = Try{e−L†Q†sG · H }
− ∂

∂x

∫ s

0
ds1 Try{e−L†Q†s1fQ†e−L†Q†(s−s1)G · H }

+

(
− ∂

∂x

)2 ∫ s

0
ds1

∫ s1

0
ds2 Try{e−L†Q†s2fQ†e−L†Q†(s1−s2)

×fQ†e−L†Q†(s−s1)G · H } + · · · . (A.7)

Using expansion (A.7) in equation (A.3) we obtain the final result

∂ρ̄t

∂t
= − ∂

∂x
Try{fρ∗} ρ̄t (x)

ρ̄∗(x)
+

∞∑
n=0

(−1)n
(

∂

∂x

)n+1 ∫ t

0
ds '(s, x)

∂

∂x

ρ̄t−s(x)

ρ̄∗(x)
(A.8)

where

'0(s,x) := Try{e−L†Q†s�f · �fρcond}
'n(s,x) :=

∫ s

0
ds1 · · ·

∫ sn−1

0
dsn Try{e−L†Q†snfQ†e−L†Q†(sn−sn−1)

. . . fQ†e−L†Q†(s−s1)�f · �fρcond}
(A.9)

denote the tensorial integral kernels. It is worth mentioning that the exact stationary distribution
ρ̄∗ fulfils equation (A.8) term by term since stationarity ensures that the average of the slow
vector field has neither sources nor sinks:

∂

∂x
Try{fρ∗} = − Try{Lρ∗} = 0. (A.10)

4 Vector notation has to be understood in the sense that products between ∂/∂x and f are scalar products. All other
products are wedge products.
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Appendix B. Perturbation expansion

Employing the small parameter in equation (5) the expressions (A.9) may be evaluated by a
perturbation expansion. Using

L(0)†P† = 0 L†Q† = 1

ε
L(0)† + L(1)†Q† (B.1)

and neglecting the small contribution L(1)†Q† in the operator exponential equation (A.9) yields
to a leading non-vanishing order

'0(s,x) = Try{e−L(0)†s/εδf · δfρadd
x } + O(ε). (B.2)

Here we have taken into account the fact that the density ρcond is for the leading order identical
to ρadd

x . Since the correlation given by equation (B.2) decays on a timescale of order ε we may
replace the density ρ̄t−s in the corresponding integral of equation (A.8) by ρ̄t and may extend
the remaining integral to infinity (Markov approximation). For the same reason the kernels
appearing in the higher derivatives are of higher order

'n(s,x) = O(εn) (B.3)

and will be neglected. Thus we arrive at the Fokker–Planck equation (11).

Appendix C. Slow manifold

Equation (A.8) constitutes a formally exact result of the full evolution equation (4) where no
approximation was involved apart from a constraint on the initial condition. Our previous
considerations have shown that within a straightforward perturbation expansion the Fokker–
Planck equation (11) can be derived. Such a result follows in a different manner too, if
the projection operator (A.1) were based on ρadd

x instead of ρcond. However, such a choice
somehow anticipates the perturbation expansion in the definition of the projection operator.
In fact, higher-order terms differ and might even be formally inconsistent. Such features are
already well known from statistical mechanics where there has been a long-lasting debate how
to include the interaction with a heat bath appropriately in the projection operator.

We will illustrate these features by considering a special case of equations (1) and (2),
namely when there exists an invariant attracting manifold determined by y = η∗(x). First of
all, the condition of invariance requires

1

ε
g(x,η∗(x)) = Dη∗(x)f(x,η∗(x)) (C.1)

whereas the motion on the manifold is given by

ẋ = f(x,η∗(x)). (C.2)

If ρ̄∗(x) denotes the invariant distribution of equation (C.2) then the full stationary density is
given by

ρ∗(x,y) = δ(y − η∗(x))ρ̄∗(x). (C.3)

The latter expression is confirmed easily by evaluating the condition of invariance Lρ∗ = 0
taking equations (C.1) and (C.2) into account. Hence, the conditional stationary density (9)
reads

ρcond(y|x) = δ(y − η∗(x)). (C.4)

Now the full drift coefficient of the Master equation (A.8) is given by

Try{fρcond} = f(x,η∗(x)) (C.5)
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in complete accordance with equation (C.2). By virtue of equations (C.4) and (A.4)

�f(x,y)ρcond(y|x) ≡ 0 (C.6)

holds, so that all diffusion kernels (A.9) vanish identically. Hence, the full Master
equation (A.8) reduces to the deterministic system (C.2) on the slow manifold. In this sense the
drift given by the weight ρcond is a renormalized drift to infinite order of perturbation theory.
Such a property depends crucially on the appropriate choice for the projection operator.
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